
Teaching Computer Programming : A Game Driven Approach

Paulo Rogério da Motta Junior Hamilton Athanazio de Lima Junior

EDS do Brasil, Rio Application Delivery Unit, Brazil

Abstract

On this paper we present two successful stories on
applying game-driven programming as a tool to
facilitate the teaching of computer programming.
Given that computer programming is a complex task
on its own, student motivation on the subject tends to
decrease throughout the course. When using a game
project as the final outcome of the discipline, users
became motivated to work together as teams or
individually to overcome difficulties in order to
achieve the final goal of a complete and playable
computer game. The study cases are presented together
with our thoughts on how to proceed with this research
in order to quantify the benefits that can be derived
from this approach.

Keywords: oop, programming teaching, games,
robocode, mobile games

Authors’ contact:
{paulo.mottajunior,hamilton.limajunior}
@eds.com

1. Introduction

Computer programming is a challenging task on its
own [Ulloa 1980]. Based upon the premise that an
individual must study and practice different subjects to
attain great skill and ensure a strong foundation in the
programming profession, we can directly infer that
teaching computer programming is not a simple and
easy task.

Preparing students to become professional developers
demands a great deal of hard work and adaptability
from the instructor. When teaching specific
programming languages there is a tendency to focus
only on the language features instead of on the
programming skills [Ulloa 1980]. Furthermore, we end
up in need of a specific course so that students may be
exposed to the trends of project reality.

Although offering a specific course on software
development sounds perfectly reasonable, rarely, if
ever, does this occur. Our best alternative is to use the
programming language courses and develop small
projects that can make the student experience more
valuable.

Which leads to the question: What kind of projects
should we choose to work on, that drives the students'
attention and makes the experience of project

development more interesting? The one thing that
came to our attention is that, programming students,
regardless of age, play and enjoy video games.

Our invitation then is to lead them through an
incremental computer game development so that, at the
end of the course, the student will have a fully
operational computer game that is usable by others,
instead of an abstract piece that creates a gap of
understanding [deLaet 2005].

The remainder of this paper is organized as follows:
Section 2, Related work that guided the organization of
our own experiences; Section 3 The Motivation for the
Research; Sections 4 and 5 Two successful stories on
Applying Game Development as a Educational Tool;
Section 6 Future Development; and finally on Section
7 Conclusions.

2. Related Work

We present two types of related work for this
paper, the first is the inherent challenges associated
with teaching programming languages, and the second
is about the use of games for educational purposes.

Regarding the teaching of programming languages
topic, we can see at [Lemos 1979] and [Ulloa 1980] the
classification of the most common problems faced
when teaching programming to students with little or
no experience on the subject. Although now when we
apply some of the techniques as described by the
authors above we still face the same problems.

Regarding the use of computer games as a tool for
increasing the students experience we can find at
[deLaet 2005] a first approach for using games in
Computer Science education.

3. Motivation

3.1 Student driven approach

Once students understand that they are part of the
project and are consulted on the course's evolution, the
synergy grows stronger and the teacher-student
relationship evolves into a partnership.

3.2 Student's motivation

Although we have found some related work on the
use of game construction as an aid for, teaching
programming, there is still little experience on the topic

in Brazil. We find different courses on game
development (for students that already do program),
educational game development (on how to develop
games that will help to teach other areas), and on the
other hand game-aided courses that are not related to
computer programming.

Following we describe two successful attempts to use
the game programming approach. The first teaches
students that already had an introductory course on
programming how to program in the Java language and
the second, teaches students with Java programming
experience how to move to the mobile environment.
On both cases the game took the place of the
traditional information system application that is
commonly used.

4. Teaching OOP Using Games

4.1 Programming Game Concept

There is a common perception that games are
“toys” [Lee 2004], but when we begin to touch upon
this arena, we found that we are talking about a huge
industry [GameIndustry 2006]. Defining a game as the
final product of the OOP teaching is one of the
strategies but an alternative is to use a programming
game, essentially it is a game that is not playable by
itself.

The main goal of the programming games is to invite
the student to be a part of the game by adding a piece
of code in it that enables the game to be played.

The used terminology of “programming game”, could
be easily interchanged with the term “environment”,
however, this interchange could create a
misunderstanding by identifying the programming
games as regular educational games, whereby the
user interacts only with the existent game elements and
interfaces, and is not required to implement the
playable piece of the game.

Game Engines are the other elements in this game
scenario that can used to avoid the implementation of
common game coding routines, as collision detection,
map creation, sound manipulation, etc.

Figure 1: game creation resources

4.2 The Programming Game Used –
Robocode

The Robocode offers an API to create virtual
robots, an environment to create an arena where the
robots fight against each other, which also offers a
very simple IDE to create the Robots using the Java
language.

The API offers the class Robot where all of the
commands are executed in a blocked mode – the first
command to the robot must wait until the first one
finishes and the Advanced Robot class where the robot
implements a pool of commands which run in a non-
blocked mode.

Soft curve movements are only available in the
Advanced Robot class where the “turn tank” and “go
ahead” movements can be combined in a curve.
However, Simple movements such as “turn left” , “go
ahead” and “stairclimbing-like” movements are offered
in the Robot class.

More than just movement commands, there are also
event handling constructs, including onGetHitByBullet
that is triggered when the robot is hit by a bullet and
onScannedRobot which is triggered when the radar
identifies other robots in its field of vision.

4.3 The Experiment

The choice for the Robocode to be used with the
students, happened in an empirical method. After some
use with the students, the “balance of challenge”
[Carswell 1996] seems to be correct, as observed
students creating very rudimentary robots as well as
some sophisticated robots.

Since the first semester of 2003 at the Unicarioca
University (Rio de Janeiro-Brazil) during the Java
Programming discipline, the Robocode approach has
been used with the students.

The main purpose is to increase the self-confidence of
the students by adding an unknown API with a short
training session1 to demonstrate their ability to make it
work and enforce that most of the programming
activities are approached by applying the concept of
“reuse” of an unknown API.

Some competitions occurred during the weekend while
others happened during a class day, depending on the
quorum. The robots were made individually or
sometimes by team participation. To increase the
challenge and promote the value of code sharing, the
sessions were divided into two acts: The first act,
where the teams code their robots (with around 60

1 The students receive 30 minutes of instruction one
week before the competition and are asked to study by
themselves before the competition

minute time limit) and then submit the ‘ready-to-use’
robot to a server where the others competitors had
access to it. In the second act, the teams are challenged
to test their own robots against the other participants’
robots and make the final adjustments needed on their
own robots. After the test comparison, the students
submit their final version. We make a simple
competition by adding four robots to the arena then
taking the first and the second robot to the next phase
and repeating until we have only one robot which is
the winner of the competition.

Sometimes at the end of the competition, which has
always resulted in a fun environment, we created a
“jam session” whereby all of the robots were inserted
into the arena.

5. Mobile Games for Java Students

Given the growing interest for mobile computing,
many Computer Science courses are adding some type
of mobility interaction as optional disciplines. Some of
these disciplines have time limitations of
approximately 32-hours. Time constraints brings to the
table the question: How can we overcome the inherent
complexity of the programming paradigm shifting to a
time-restricted course? The answer came as the use of
game development could help students to focus on an
interesting task and bringing them together to work as
teams.

Since the J2ME course was included on the Technical
Computing Course of Fundação Bradesco2 (Rio de
Janeiro – Brazil), and students were already familiar
with simple programming projects in the Java
programming language, bringing the students together
became the challenge so that we could focus on the
task at hand and develop the course content.

The approach was to divide the class into seven teams
of five students each. Each student had a well-defined
role either as a programmer, designer, tester, manager
or documentation writer. The projects were proposed
by the teams and all communication would only take
place through the manager with the teacher. Every
team member had to participate on design and
programming activities and to their other assigned
roles, as well. Using this structure, we could exercise a
real-life project in a small controlled environment as in
[Jones 2000].

The first task was to present the project to the teacher
to obtain sponsorship. Students were asked the
question, “Would you buy this project?” Which then
led the students to reformulate the project definitions
and presentations. Besides the project implementation,
theoretical concepts were presented in class both on
J2ME and game development. Since the students were

2 Fundação Bradesco gives a post high school
computing course at technical level.

already familiar with programming, the approach used
was the “Game Library”, as described earlier in this
paper, where they received a base working game with a
simple library that allowed collision detection and
game timing through a simple thread mechanism.

The students had little or no experience with threading
and this was revealed as a critical path element
because it was not specified as a prerequisite or
included as part of the scope.

At some point in time, near the middle of the course,
all the basic topics were covered and the remaining
time was devoted towards implementing the projects.
This was a major change on the student’s perception
since until that time they were guided to implement
only small programs. For the first time they were
confronted with a real project and with the associated
doubts and uncertainties. At this point, the manager-
only communication was dropped and communication
started to take place mostly with lead programmers in
order to check the code. The teacher’s role changed
from one of sponsorship to technical leader, basically
helping the programmers find the solutions for their
problems.

One clear observation was that as soon as the concepts
were finished and only the coding was left the students
started working diligently. The team synergy exhibited
during the meetings was a new ingredient that wasn’t
evident before. All team members were working
together to achieve the defined project goals.

The results observed are enumerated as follows:

1. Motivation was improved – using a subject that
is current in their life helped to decrease the
distance between teacher and students. Most of
the time we try to bring them out of their world
and ask them to think on Information Systems
of which they have little or no knowledge.

2. Self esteem and confidence developed – facing
a real life challenge helped to increase the
student’s morale by giving them the tools
necessary to develop software that could be
shared and explained even to non-computer
friends [deLaet 2005].

3. Programming skills improved – the use of new
and challenging features like threading and
facing a real project lifecycle exposed the
students to a group of situations demanded them
to improve their programming skills. Although
we observed a great difference in the
complexity of the games, all of the groups
programming skills improved.

As a final note the games ranged from quiz-based
adventures to action shooting games. Since the games
weren’t intended for sale, we did not focus on

performance and size metrics. We believe that these
metrics should be studied in a game development
discipline that focuses, specifically, on the issues that
arise in the game industry.

6. Future Development

Since this is a work in progress, we are planning
next steps on how to measure the results in a more
pragmatic way. These first attempts prove that 1) this
is a path that must be explored and 2) the use of game
developing does improve students’ learning
experience. We are now facing an issue as to how and
what to measure in order to quantify the benefit of
using this approach on a regular basis.

Specifically, for the Robocode approach, after the
identification of the quality impact metrics by use of
this game framework, we plan to create another game
framework that deals with a non-violent subject, and
establish a measure to compare the results. The
proposal of this new game framework is draft version
and can be reached at [JSoccer 2005].

For the mobile computing the development of a richer
library that will empower students with more
functionality could be a good approach, but it is not
quite clear on how to measure the students evolution
since this is a much more flexible environment.

7. Conclusion

We conclude the use of games as tools for
motivating students on a complex subject like
computer programming has many benefits. Not only in
the development of programming skills, but also by
bringing together many different aspects that are
learned, isolated , throughout the Computer Science
program of Universities [Jones 2000]. When
motivating students, classes become easier to conduct
and the content is better understood.

Another important point is that it is not necessary to be
a part of the game industry to guide students through
the development of good and appreciable games (not
necessarily simple) the level of sophistication depends
mostly on the effort employed by students in learning
more sophisticated programming techniques for their
games.

References

CARSWELL, L. and Benyon, D. 1996. An adventure game
approach to multimedia distance education. In
Proceedings of the 1st Conference on integrating
Technology into Computer Science Education
(Barcelona, Spain, June 02 - 06, 1996). ITiCSE '96.
ACM Press, New York, NY, 122-124.

DELAET, M., Sweedyk, E., Slattery, M. C., and Kuffner, J.
2005. Computer games and CS education: why and how.
SIGCSE Bull. 37, 1 (Feb. 2005), 256-257.

GAMEINDUSTRY, available at
http://www.gamesindustry.biz, August 2006

HOLLIDAY, M. A. 1995. Incremental game development in an
introductory programming course. In Proceedings of the
33rd Annual on Southeast Regional Conference
(Clemson, South Carolina, March 17 - 18, 1995). ACM-
SE 33. ACM Press, New York, NY, 170-175.

JONES, R. M. 2000. Design and implementation of computer
games: a capstone course for undergraduate computer
science education. In Proceedings of the Thirty-First
SIGCSE Technical Symposium on Computer Science
Education (Austin, Texas, United States, March 07 - 12,
2000). S. Haller, Ed. SIGCSE '00. ACM Press, New
York, NY, 260-264.

JSOCCER, available at
http://jsoccer.dev.java.net, August 2005

LEE, J., Luchini, K., Michael, B., Norris, C., and Soloway, E.
2004. More than just fun and games: assessing the value
of educational video games in the classroom. In CHI '04
Extended Abstracts on Human Factors in Computing
Systems (Vienna, Austria, April 24 - 29, 2004). CHI '04.
ACM Press, New York, NY, 1375-1378.

LEMOS, R. S. 1979. Teaching programming languages: A
survey of approaches. In Proceedings of the Tenth
SIGCSE Technical Symposium on Computer Science
Education SIGCSE '79. ACM Press, New York, NY,
174-181.

ROBOCODE, available at
 http://robocode.sourceforge.net/, August 2006

ULLOA, M. 1980. Teaching and learning computer
programming: a survey of student problems, teaching
methods, and automated instructional tools. SIGCSE
Bull. 12, 2 (Jul. 1980), 48-64.

